Selected Publications
Belitz, C., Ocumpaugh, J., Ritter, S., Baker, R. S., Fancsali, S. E., & Bosch, N. (2023). Constructing categories: Moving beyond protected classes in algorithmic fairness. Journal of the Association for Information Science and Technology, 74(6), 663–668. https://doi.org/10.1002/asi.24643
van Stee, E. G., Heath, T., Baker, R. S., Andres, J. A. L., & Ocumpaugh, J. (2023). Help seekers vs. help accepters: Understanding student engagement with a mentor agent. In Wang, N., Rebolledo-Mendez, G., Matsuda, N., Santos, O. C., & Dimitrova, V. (Eds.), Artificial Intelligence in Education: 24th international conference, AIED 2023, Tokyo, Japan, July 3–7, 2023, proceedings (pp. 139–150). Springer Nature. https://doi.org/10.1007/978-3-031-36272-9_12
Nasiar, N., Zambrano, A. F., Ocumpaugh, J., Hutt, S., Goslen, A., Rowe, J., Lester, J., Henderson, N., Wiebe, E., Boyer, K., & Mott, B. (2023). It’s good to explore: Investigating silver pathways and the role of frustration during game-based learning. In Wang, N., Rebolledo-Mendez, G., Dimitrova, V., Matsuda, N., & Santos, O. C. (Eds.), Artificial Intelligence in Education: Posters and late breaking results, workshops and tutorials, industry and innovation tracks, practitioners, doctoral consorium and blue sky, 24th international conference, AIED 2023, Tokyo, Japan, July 3–7, 2023, proceedings (pp. 497–503). Springer Nature. https://doi.org/10.1007/978-3-031-36336-8_77
Andres, J. A. L., Hutt, S., Ocumpaugh, J., Baker, R. S., Nasiar, N., & Porter, C. (2022). How anxiety affects affect: A quantitative ethnographic investigation using affect detectors and data-targeted interviews. In Wasson, B., & Zörgő, S. (Eds.), Advances in Quantitative Ethnography: Third international conference, ICQE 2021, virtual event, November 6–11, 2021, proceedings 3 (pp. 268–283). Springer. https://doi.org/10.1007/978-3-030-93859-8_18
Hutt, S., Baker, R. S., Ocumpaugh, J., Munshi, A., Andres, J. M. A. L., Karumbaiah, S., Slater, S., Biswas, G., Paquette, L., Bosch, N., & van Velsen, M. (2022). Quick Red Fox: An app supporting a new paradigm in qualitative research on AIED for STEM. In Ouyang, F., Jiao, P., McLaren, B. M., & Alavi, A. H. (Eds.), Artificial intelligence in STEM education: The paradigmatic shifts in research, education, and technology (pp. 319–332). CRC Press.
Ocumpaugh, J. (2015). Baker Rodrigo Ocumpaugh monitoring protocol (BROMP) 2.0 technical and training manual. Teachers College, Columbia University and Ateneo Laboratory for the Learning Sciences.
Ocumpaugh, J., Baker, R., Gowda, S., Heffernan, N., & Heffernan, C. (2014). Population validity for educational data mining models: A case study in affect detection. British Journal of Educational Technology, 45(3), 487–501. https://doi.org/10.1111/bjet.12156
Baker, R. S., Gowda, S. M., Wixon, M., Kalka, J., Wagner, A. Z., Salvi, A., Aleven, V., Kusbit, G. W., Ocumpaugh, J., & Rossi, L. (2012). Towards sensor-free affect detection in cognitive tutor algebra. In Yacef, K., Zaïane, O., Hershkovitz, A., Yudelson, M., & Stamper, J. (Eds.), Proceedings of the 5th International Conference on Educational Data Mining (pp. 126–133). International Educational Data Mining Society.